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Abstract

Positron Survival In Type II Supernovae

by

Steven J. Sturner

In this work I investigate the possibility of Type 11 supernovae being the origin for

positrons producing observed annihilation radiation observed toward the Galactic center.

It was my contention that the decay of 56Co coupled with falling densities would allow

for the production and extended existence of positrons in the supernova outflow.

Supernova 1987A has prompted many people to construct models of supernova outflow.

I use the results of two existing models as the initial conditions in my models. I have

created both an analytic and a computer model for the survival of positrons. These

models show that while Type II supernovae fall short of the needed production of

surviving positrons, the lower densities existing in Type I supernovae may be a more

promising source.
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I. Introduction

Since the discovery of Supernova 1987A (a Type II supernova) in February of 1987

there has been a flurry of activity in the field of supernova modelling. The fact that the

supernova occurred in the nearby Large Magellanic Cloud and that the progenitor star has

almost universally been identifieda Sk -69 202 (Woosley 1988; Woosley (in press);

Nomoto et al. 1988; Shigeyam, lomoto, and Hashimoto 1988) has allowed great

progress to be made in this area. "ror to exploding, Sk -69 202 was seen as a B3-I blue

supergiant with a surface temperature of approximately 16,000 K and a bolometric

magnitude of -7.5 to -8.2. A blue supergiant becoming a Type II supernova shocked

many people. It has been suggested that Sk -69 202 was once a red supergiant but it

evolved back to the blue. Models have used low stellar metallicity and mass loss to get

such a star to evolve back before exploding (Woosley 1988; Shigeyama, Nomoto, and

Hashimoto 1988; Nomoto et al. 1988). As a result of the proximity of SN 1987A, there

is a wealth of data on the light curve. Details of the middle light curve have put limits on

the amount of radioactive 56Ni (and thus the 56Co) that was produced in the explosive

silicon burning that took place as the shock propagated outward. Details of the middle

light curve together with the early emergence of x- and y-rays indicate that this nickel was

mixed radially outward as well (Woosley 1988; Woosley (in press); Pinto and Woosley

1988; Shigeyama, Nomoto, and Hashimoto 1988; Nomoto et al. 1988). This radial

mixing was driven by Rayleigh-Taylor instabilities caused by the deposition of y-ray

energy in the region of nickel production.

These new models allow many calculations to be made on the effects of supernovae

on their gaiactic neighborhood. One of these will be investigated in this thesis; the

possible contribution of positrons from a Type II supernova to the observed Galactic 511

keV y-ray line. Observations of celestial annihilation radiation was pioneered by Haymes
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et al. at Rice University in the late 60's and early 70's. They found a source of possible

annihilation radiation towards the Galactic center. However, the source of the observed

line was never pinpointed as positron annihilation because of inadequate energy

resolution. The measured flux was 1.8x10 -3 y cm-2 s-I (if interpretted as a point source)

when using a detector with an aperture of 24" FWHM in 1970 and 1971. Later, in 1974,

a detector with an aperture of 15 FWHM was used and a flux of 0.80x 10-3 y cm -2 s-I

was observed. Thus, evidence for a variable or diffuse source was seen from the

beginning. Several groups have continued this work. In 1977 Bell/Sandia Labs were

able to determine that the line was due to annihilation of positrons because of their

improved energy resolution. They observed a flux of 1.22x10-3 y cm-2 s- I towards the

Galactic center with a 15' FWHM aperture. Also in 1977 the Centre d'Etude Spatiale des

Rayonnements measured a flux of 4.2 or 3.2 x10 -3 y cm' 2 s-1 (depending on reduction

method) using an aperture of 50" FWHM. Comparing their observations with earlier

ones, they concluded that the observed flux depended on the instrument aperture. This

high flux was confirmed by a group at the University of New Hampshire with a detector

with an aperture of 100" FWHM in 1977. Riegler er. al. made observations using the

HEAO-3 satellite (35" FWHM) in 1979 and 1980. They found fluxes of 1.85 and 0.65

x10-3 7 cm-2 s- respectively (Share et al. 1988). Ramaty and Lingenfelter saw this as

evidence of a variable compact source that turned on in 1977 and off in 1979 plus a

diffuse source (Ramaty and Lingenfelter 1987). Share et al. made observations using the

130" FWHM V-ray spectrometer on the Solar Maximum Mission satellite from October to

February yearly from 1980-81 to 1985-86. They report a flux of about 2.1x10 -3 ycm-2

s-1 with less than a 30% yearly variation. This was significantly larger than observations

made with smaller apertures within that same time period (see figure 1). Thus Share et

al. conclude that the best explanation is a diffuse source of annihilation radiation and the

case for a variable source was weakened because of the short period for variability

needed (Share et al. 1988).
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Clayton (1973) suggested that the source of these positrons should be either 56Co

(daughter of 56Ni) or 4Ti. He predicted that both of these nuclei should be produced

during explosive nucleosynthesis. The production of this nickel has been proven by the

light curve of SN 1987A. He concluded that both were potentially adequate to account

for the observed feature.

In this thesis I discuss the escape of positrons produced by the decay of cobalt to

iron in a Type II supernova. I decided not to look at whether positrons could be "shot"

out of a supernova, but whether a positron could survive for an extended period of time

within the expanding gas. My motivations for this were two-fold:

1) The uncertain structure of the magnetic fields within the supernova made it uncertain

that a charged particle had any chance to escape.

2) The velocity profile of an expanding supernova provided an environment where the

density of electrons would decrease rapidly (section IV).

The uncertain nature of the magnetic fields made them hard to incorperate into my model.

The condition that the positrons were required to remain within the shell in which they

were produced implied the existence of these fields.

The organization of this thesis is as follows. In sections II-V, I discuss the

processes involved in the production, thermalization and annihilation of positrons. In

section VI, I discuss published models of SN 1987A from which I determined the initial

conditions for my models. Sections VII and VIII contain these models of positron

survival. There is both an analytic and a computer modeL
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The decay of cobalt to iron is an important process because the energy liberated

powers a supernova during the middle part of its light curve. We are particularly

interested in the emission of positrons from this reaction as a possible source for the

diffuse component of the background 511 keV y-rays. The cobalt is formed by the decay

of 56Ni. This isotope of nickel has a half-life of 6.1 days; therefore, it all has essentially

turned to cobalt at times of interest to us. I have therefore assumed that 56Co was the

explosive nucleosynthesis product. The half-life of 56Co is 78.8 days (see figure 2). A

positron is emitted when the cobalt decays to an excited state of iron. This route is taken

20% of the time.

Co 56

0.8469 MeV

Fe 56

The Q-value for electron capture is 4.57 Mev (Lederer et al. 1967). From this, one

can determine that the maximum kinetic energy of an emitted positron is 1.46 MeV. The

positron energy distribution function is of the form (Whaling 1960):

N = kpw(w 0 - w)2

where k = a normalization constant,
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p = momentum of the positron,

w = total energy of the positron = KE + mc 2,

w0= maximum total energy of the positron = KEm + mc 2.

Thus N =kpw[ KEmax - KE ]2. This can be simplified so the only variable is the kinetic

energy:
IIk 12 2r i - 12

N = kKE2 IKE + 2mc2 ' [KE + mc2 I KEmax KE i
T L J L (11

To numerically follow the thermalization of these positrons I will find it convenient to

approximate the spectrum as a weighted sequence of monoenergetic emissions. Breaking

the energy range (0-1.46 MeV) into ten intervals, I calculate the fraction of positrons

emitted in each interval by finding the area under a plot of equation (11- 1) (see figure 3) to

be:

Table 11-1: Fraction of Positrons in Kinetic Energy Interval

Interval (MeV) Midpoint Energy of Interval (MeV) Fraction of Total Positrons

0.000 - 0.146 0.073 0.061

0.146 - 0.292 0.219 0.117

0.293 - 0.438 0.365 0.152

0.439 - 0.584 0.511 0.165

0.585 - 0.730 0.657 0.158

0.731 - 0.876 0.803 0.142

0.877 - 1.022 0.949 0.104

1.023 - 1.168 1.09 0.066

1.169 - 1.314 1.241 0.030

1.315 - 1.460 1.387 0.005

This fraction will be used to weight quantities when in determining a mean value with

respect to energy.
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M. Positron Energy Loss in a Partially Ionized Medium

Once a positron is emitted, it loses energy in a variety of ways as it passes through

matter. It will lose energy to the un-ionized component by inelastic collisions with the

atomic electrons. In this process the electron will be removed from the atom or it will

move to an excited state. The positrons will lose energy to the ionized component by

interacting with the free electrons. The positrons will also radiate energy via

Bremsstrahlung when interacting with nuclei. I derive expressions for these in order to

calculate thermalization times for positrons emitted by 56Co.

HIla) Coulomb collisions with bound electrons

The energy loss rate for inelastic coulomb collisions with bound electrons has been

calculated by many people. The general form of this loss rate can be gotten by a simple

classical calculation (Whaling 1960). Consider an ion of mass M, charge ze, and

velocity v. Let b be the impact parameter.

M, ze

m, -e

The momentum gained by the electron is:

F dt where F =x 2  2
I x2 +lb
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If the electron is assumed to move very little during the encounter this can be simplified

to:

Ap =f F dt where F_ = F sin - ze2b 3

" (x2 + b2 )2

With the substitution dx = v dt,

F.L dx 2ze2

Apf v -bv

If the electron is regarded as free, then it acquires kinetic energy:

(Ap) 2

AE-=(,P)
2m

The electron may be quasi-free if the Coulomb force from the passing ion greatly exceeds

that holding the electron in its orbit. Therefore the amount of energy transfen'ed from the

ion to a bound electron is:

2z2e4

b2v2m

If there are NZ electrons per cubic centimeter, then the ion will encounter 2xb db dx NZ

electrons with an impact parameter between b and b+db in traveling a distance dx. Thus

the energy lost, dE, will be 21rb db dx NZ AE. The total amount of energy lost in

traveling a distance dx is found by integrating over all impact parameus:

•E = 47tz2e4NZ j ... .._ _ db 4,x2e4NZ
dx' my2 f b m.2,



if z=1 (as for positrons)

dE (4c 4 )(NZ1 ( nax§ rni
dx ~%fC)I 52 ymj)

The values of brin and bmx are estimated in different ways. One example is:

F Z2  h 1

b .=maxl I and b V',

where y is the relativistic correction factor and (o is a characteristic atomic frequency of

motion (Jackson 1975). Physically, here the minimum impact parameter is either the

impact parameter where the maximum allowable energy (272mv2) is transferred to the

bound electron using the above form for AE or the minimum extent of the electron's

wave packet. The maximum impact parameter is gotten by setting the collision time equal

to the orbital period. If the collision time is greater than the orbital period there is no net

transfer of energy to the atomic electron.

More in depth calculations yield various results. Bethe derived a quantum

mechanical formula for the energy loss of an electron owing to ionization of bound

electrons as it passes through matter with relativistic corrections and corrections due to

the electron spin (Heitler 1934; Wu 1960):

d =NZbo d [( fl ) 112

where I is the mean ionization potential (-11.5 eV x Z),

NT.,md is the density of atomic electrons,

= v/c,
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and rpot is a correction term resulting from dielectric properties of the medium.

Equation (11-2) can be transformed into:

dE= 4ce- d 2 !2 + (111-3)

) L 11' 1J

This gives a factor multiplying the logarithm that is the same as in the classical equation

(1I-1). In order for equation (11-2) to apply to positrons I believe that the argument of

the logarithm should be increased by a factor of two in equation (11-2). For the case of

an incoming electron arguments were made that the maximum energy transfer would be

1/4 my2 instead of 1/2 mv 2 because it is impossible to distinguish whether the detected

outgoing electron is the target or the projectile. But a positron and electron are

distinguishable. This would eliminate the -1/2 In 2 in equation (11-3). The details of the

calculation were not provided making it impossible to tell for certain. Since it is not the

purpose of this thesis to investigate details of energy loss, I will assume equation (I1-3)

is sufficiently correct for positrons.

Another version of this formula was listed for positrons or electrons by M. Zombeck

in Special Report 386 of the Smithsonian Astrophysical Observatory (Sect. 13, p. 23,

1980): r r
A = 4=2-M- N I
dx 2 C= J2 2
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47re 4  .czd)i 1 2m4
;C2 L3 ) L iJ )J jc

where r. 2 the classical electron radius,
mc

and as before, I=the mean ionization potential, P=v/c, and NZboud--the density

of atomic electrons.

A third version of this formula is given for electrons by J. Jackson ( gsi pp.

619-637 ):
dE 4e' 4 .NZIbo..d 'F +"I ~

x e 4c In I32 '-II 2h<>J (-5)

where I = h<0)>.

These formulae differ only in the arguments of the logarithm and the correction terms

involving 3. A comparison of this correction term follows.

Table I1l-1: Comparison of the correction terms of equations (11-3) and (111-4)

1'2~2 2 2

0.1 0.01 -0.005 0.15 -0.20

0.2 0.04 - 0.020 0.13 - 0.21

0.3 0.09 - 0.045 0.11 - 0.24

0.4 0.16 - 0.080 0.08 - 0.27

0.5 0.25 - 0.125 0.04 - 0.31

0.6 0.36 -0.180 -0.01 -0.36

0.7 0.49 - 0.245 - 0.06 - 0.41

0.8 0.64 - 0.320 - 0.10 - 0.45

0.9 0.81 - 0.405 - 0.12 - 0.47

Since the value of the logarithm term was of order 10 for the initial energies of the
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positrons, I considered the differences in these small terms unimportant.

IIb) Plasma excitation

The positrons also interact with the free electrons in a medium. Bussard claims that

positrons lose energy to the ionized component of a medium by exciting plasma waves

(Bussard, Ramaty, and Drachamn 1979). The formula that he quotes from Book and Ali

(1975) is:
= 1.3x10_13  ' -[M M, (E InA eV/cm (M1-6)

E
kT

where M._f dx c" ex

0

nC= the free electron density = NZf,

E = the positron energy in eV,
1

rTkTv2[x(_ 2e2  h 1
A M 2) La~ e mi

I I

Bussard et al. went into no details about the origin of this equation. Jackson deals with

the problem of an ion of charge ze passing through an electronic plasma (gn it pp.

641-643). The interactions are broken into two types depending on whether the impact

parameter is larger than or smaller than a Debye length. When the impact parameter is

smaller than a Debye length there is a two-body screened potential interaction. When the

impact parameter is larger than a Debye length there is a collective response of the

medium and plasma oscillations are excited where the energy of these oscillations is

extracted from the particle. Thus Jackson's formula is broken into two parts:
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2 (1.123kDV )

dE = (ze) o2_ hf 1dx v2  Op for b >

(ze2 k D)14kbi

-d X V2 1.k for b <

4inee2  2 41rne 2  h
where - m ,kD kT and bmin=maxL  2 n v

After making the appropriate substitutions:

dx Mc 2 U L 1.123 >, -7D

dE- 2 ]In 7  , forb< -L, (1-8)
dXm~1 )C 421. [1.47 max( mv) jk

where 41-4 5. lxlO "25 MeV-cm 2 ,
mc

2

and as before ne= the free electron density = NZf.

In order to make these formulae appropriate for positrons I believe that the form of bi.

should be altered to that of an electron:

bri = max I e 2 , h F•

Jackson states that his calculations are for non-relativistic particles. Bussard makes no
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statement about the energies where his formula is valid. Jackson's small impact

parameter formula and Bussard's formula are nearly equal if one assumes that the latter is

also non-relativistic. But the problem is that they seem to be explaining two different

types of interactions, plasma oscillations and two-particle interactions. This is one of my

major dilemmas, considering that plasma energy loss is not the objective of this thesis.

What follows is a comparison of the coefficients of Bussard's and Jackson's formulae

(assuming both formulae are valid at the listed energies).

Table II-2: Comparison of the coefficients in equations (M-6) and (MI-7)

E (MeV) E13x10"25 MeV-cn z  51x12- Mev-cnmE

1.50 0.94 0.87 5.5

1.00 0.89 1.3 5.8

0.80 0.85 1.6 6.0

0.60 0.79 2.2 6.5
0.40 0.69 3.3 7.4

0.20 0.48 6.5 11

0.10 0.30 13 17

0.05 0.17 26 30

0.01 0.04 130 130

(all values are xl 25 )

The total energy loss due to the ionized component is either equation (11-6):

dE 1.3x02! In r .[MM)~I 2e2YaxF h± 1  C/cl
x 41 e I L74 '° ) k mu m u j

(EinMeV)

or by adding equations (M1-7) and (M1-8):
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dx 0.764 4ane 2

(in MeV/ cm)

fIIc) Radiative losses due to Bremsstrahlung

The radiative loss rate due to Bremsstrahlung has been calculated by several people

also. Bethe and Heitler calculated the loss rate to be (Wu 1960):

dx 137 (7cmc2 3

where mc2 << E0 << 137 inc2 and screening of the nucleus is neglected.
I

z2

The ratio of radiative energy loss to ionization loss is given approximately by:

(dE)RAD EWZE = 0.0685xE (MeV). (I- 1)
(dE)ION 1600 Mc2

Thus this formula predicts radiative losses to be small at our energies.

Jackson also has words of wisdom on this subject (62sit pp. 708-719). He gives

energy loss equations for the nonrelativistic limit and the ultrarelativistic limit. The ratios

of radiative losses to ionization losses are:

137 Z-- I( nonrelativistic ) (M-12)

(dE)

and
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(233 M 1

(dE) RA 4[ ( ultrarelativistic, >>1) (111-13)

where B is the argument of the logarithm in the ionization energy loss equation.

These formulae yield ratios of a few ten thousandth's of a percent and a few percent

respectively. Zombeck also has a formula for radiative losses (M cit Sect. 13, p. 23):

dE = 3.09xi0 -27 NZ2 ( E + mc2 ) Mev/cm (111-14)dx

This is also negligibly small compared to the ionization loss rate for our case. Thus I feel

that Bremsstrahlung can be safely ignored in our calculations. I believe that Cherenkov

can also be ignored because of the small rate of loss (Wu 1960), if it exists at all.

Hid) Conclusion

From these results I must choose expressions for the energy loss of 56Co positrons

in the supernova interior. Because the fraction of positrons that survive the expansion is

only weakly sensitive to the differences in thermalization times the choice of which to use

is not crucial. I chose to use equation (11I-4) and equation (I-9) (see figures 4 and 5).
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IV. Hubble Flow and Its Imnact on the Denstv Evolution of Sunernovae

As I have shown, the energy loss rate for a positron passing through matter depends

on the density of that matter. The rate of positron annihilation also depends on the

density of the matter, specifically the electron density. Thus I had to find an expression

for the density evolution of the supernova ejecta. An important step in simplifying the

density evolution of a spherical shell in a supernova was the assumption that the

expanding gas is in a Hubble-type flow. Hubble flow simply means that the velocity at a

given point in the supernova is proportional to its distance from the center of the

explosion. It is easy to understand why this type of outward flow should occur. As the

shock propagates outward each shell is pushing on the layers on top of it. The outer

shells are pushing on less matter than inner ones and therefore should accelerate to a

larger velocity. This becomes true in supernovae after acceleration has ended and after

the size is much greater than the initial size. From this time on the ratio of velocity, v(r),

to distance from the center, r, is a constant for all r. This also means that there is a

velocity gradient across a spherical shell. If one considers such a shel, it can be shown

as follows that the density within that shell decreases as t-3.

v + dv

r

dr
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As t => t +dt: r => r +vdt

r + dr => r + dr + (v + dv)dt.

From this, one Can show that the thickness of the shell has increased to dr + dvdt = dr(1 +

(VR/R)dt) wh ere VR is the velocity of the outermost region of the supernova, and R is the

radius of that region. It is easy to show dv = dr (VR/R) because in a Hubble flow v(r)/r =

VR/R = constant. To show that the density in this region is proportional to 0- one needs

to use conservation of mass within the shell:

M(t) =M(t + dt),

where M(t) =4inr(t)2 dr(t) p(t), and

M(t + dt) =4inr(t + dt)2 dr(t + dt) p(t + dt).

Setting M(t) = M(t + dt):

==> 4nr r(t)2 dr(t) p(t) =47c r(t + dt)2 dr(t + dt) p(t + dt),

Keeping terms only to first order in dt:

4inr(t)2 dr(t) p(t) = 47c [r(t)2 + 2r(t)v dt] dr(t) [ 1 + (VR/R) dt] p(t + dt),

-=> r(t)2 p(t) = [r(t)2 + 2r(t)v dt] [1 + (VR/R) dt] p(t + dt),

0 = r2 dp + [2rv + r2(VRIR)] p dt ,

= r2 (dp + 3(Vft/R) p dt],

dp = -3(VR/R) Pdt.

The solution to this equation is:

P(t) = p(tdT whre3
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or

3
to

n(t) = n(to) - , where t > to. (IV-1)

Thus the velocity gradient across a spherical shell due to a Hubble-type flow causes the

particle density within that flow to decrease as r 3 with the restriction that the value taken

for to must be after a Hubble-type flow has been established. For my study the values

n(to) and time to are obtained from published supernova models (see section VI).
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V. The Radiative Caoture and Annihilation of a Positron

So far I have covered the production and thermalization of positrons. Positrons are

destroyed by annihilating with electrons. Positrons can annihilate directly or by forming

positronium first. Positronium in the singlet state has a lifetime of 10-10 s and emits two

511 keV photons during annihilation. Triplet positronium has a lifetime of 10-7 s and

undergoes three-photon annihilation (Bussard, Ramaty, and Drachman 1979; Ramaty and

Lingenfelter 1987). The probability of annihilation in flight is negligible until the

positrons slow to energies of several hundred eV (Bussard, Ramaty, and Drachman

1979). The values of equations (1M1-4) and (11-9) rise dramatically at low energies

(below 0.2 MeV). The positrons will therefore spend only a small amount of time at

these energies before thermalizing. I have therefore required all positrons to thermalize

before annihilating. At temperatures associated with the interior of a supernova (a few

thousand degrees) the dominant mode of annihilation is positronium formation by

radiatively recombining with free electrons (Bussard, Ramaty, and Drachman 1979) (see

figure 6). The cross section for such a reaction changes with velocity (and therefore

temperature). Thankfully the cross section is only proportional to T-1/ (Osterbrock

1974) and is therefore relatively insensitive to these changes.

The theory of radioactive decay is well known. The radiative recombination and

subsequent annihilation of a positron can be treated in an analgous manner. The

probability that a positron will decay (annihilate) in the next time interval dt is

proportional to dt and inversely proportional to the mean lifetime T :

Probability of Decay = dtft. (V-I)

If the mean lifetime is taken to be a constant, i.e. constant density and constant
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recombination rate, and if no new positrons are created then the number of positrons

decreases exponentially with time:

dN+ dt
N+

t
N+=N+0e" (V-2)

In an expanding supernova the density is proportional to r 3 , as I have shown. Since the

mean lifetime against positronium formation is inversely proportional to the density, the

mean lifetime goes as 0 :

r 1-
I 3n(t)to Zf, XI 3 3v3)

where to = a time when Hubble flow has been established,

n(to) = the density of atoms at to,

Z = the number of free electrons per atom at to,

= the radiative recombination rate,

therefore - = - (V-4)
N+ at

There are then two ways of calculating the probability of a positron surviving to a

predetermined time:

1) A Monte Carlo simulation using the probability of capture and annihilation,

2) An analytic solution to equation (V-4) which requires taking a as a constant.
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The Monte Carlo routine that I used stepped through time with a constant time step.

At the beginning of each step the mean lifetime was evaluated for that time. This set the

probability of capture for that time step. A random number was generated for each

positron that had survived to that time. If the number (between 0 and 1) was less than the

probability, the positron was removed. The time was then incremented after all the

surviving positrons had been checked for survival. Thus the number of positrons that

survived to the "end" time out of the initial number injected could be found. There was

one major difficulty with this method. The "resolution" was inversely proportional to the

number of positrons initially injected. By "resolution" I mean the smallest probability of

survival obtainable. For example, in following the history of 104 particles the probability

of survival cannot be calculated when it becomes comparable to 104 or less. The

survival fraction is quantized in units of 104 . In Type I SN the probability of survival is

a very small number. To get probabilities down to the size needed would use an

enormous amount of computer time. This problem led to the use of the following

analytic solution.

The analytic solution I derived from equation (V-4) proved to be more useful for my

calculations:

N+ = dt
N+ at3

N+(2)f d+ I dt

N+(t2) t

N (t) r - 2 21 j. J.)

In 1 I 1 t 1

N+(tI) J i

N+(t 1)
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With this formula I could calculate the probability of a positron surviving without using

arbitrarily large numbers of initial positrons to get small probabilities.

A comparison of the two methods shows that they produce comparable results when

the number of positrons that survive to the end of the monte carlo program is of the order

100 (see Appendix A). Equation (V-5) can be used to produce an analytic model for the

survival of positrons but it is difficult to incorporate the thermalization process (see

Analytic Models of Positron Survival, section VII).

The advantage of the numerical approach, on the other hand, is that it does not

require a constant annihilation rate per free electron. The temperature, ionization, direct

in-flight annihilation, etc. can all be represented by time-dependent quantities in a Monte

Carlo history. That approach is therefore more general. The temperature of the

supernova ejecta should decrease with time due to the fewer number of decays depositing

energy within the supernova. The rate of this cooling is unknown because it is uncertain

whether a pulsar was created in the SN 1987A. This and other unknowns (degree of

radial mixing, expansion velocity, magnetic field configuration, clumping, etc.) coupled

with the weak temperature dependence of the recombination rate, X, led me to believe that

my analytic solution was sufficient for this rough survey of positron survival. I have

therefore used the approximation that the mean lifetime of positrons against radiative

recombination is exactly proportional to t3 and have esimated the proportionality

constants for typical supernova conditions in my models.
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VT. Models of SN 1987A

I chose to use Type II supernova models by Woosley et al. and Nomoto et al. as the

sources of parameters needed as input in my models. The model of Woosley's that

produced the best fit to the light curve of SN 1987A was model 1OHM. This model

assumed that the progenitor star was Sk -69 202. This star was assumed to have been 20

M. when on the main sequence. Such a star would have a 6 Mo helium core. The star

was then allowed to lose 4 Mo from its hydrogen shell prior to the explosion. A 1.4 Me

neutron star was formed from this helium core. The explosion was simulated by

replacing the neutron star with a piston that had an energy of 1.45x1051 ergs. During the

explosion, approximately 0.07 Mo of 56Ni was formed in the silicon shell. This model

mixed the 56Ni radially outward to a mass coordinate of 9 Mo . This was done to

improve the light curve fit in the 20 - 40 day region. It also accounted for the early

detection of x- and y-rays at 175 days. The regions where the 56Ni was mixed was not

homogenized and the model 10H(non-mixed) density profile was left unaltered (Woosley

1988; Woosley (in press); Pinto and Woosley 1988).

Nomoto et al. have also produced several hydrodynamic models of SN 1987A. The

model that produced the best fit to the observed light curve was model 1 1El. This model

also assumed that the progenitor star was 20 Me while on the main sequence. Similarly,

a 1.4 Me neutron star was formed from the 6 Me helium core. In this model the star was

assumed to have undergone mass loss leaving it with 12.7 Me of material at the time of

collapse. The explosion was simulated by replacing the iron core with a point mass and

introducing the explosion energy interior to the 11.3 Me of ejecta. Model 11El used an

explosion energy of 1.00xl0 51 ergs. This model produced appproximately 0.07 Me of

56Ni. Radial mixing was also required in this model to fit observations of the light curve

between 25 - 40 days and the early detection of x- and y-rays. Thus Nomoto mixes the
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nickel out to a radial mass coordinate of 10 Mo (Note: Nomoto and Woosley use different

conventions. Nomoto's mass coordinate system has its zero point at the inner edge of the

ejecta while Woosley's is at the center of the remnant. Hence forth, I will always add 1.6

M o onto Nomoto's coordinate for ease in comparing results.) (Nomoto et al. 1988;

Shigeyama, Nomoto, and Hashimoto 1988).

Table VI-1: Summary of supernovae model parameters

Nomoto et al. Woosley et al.

Main Sequence Mass 20 Mo  20 Me

Neutron Star Mass 1.4 Me 1.4 Me

Mass of Ejecta 11.3 Me 14.6 Me
Energy of Explosion 1.00xl0 51 ergs 1.45x10 51 ergs

Maximum Radius 11.6 Me 9 Me
for Mixing Ni (Woosley Cony.)

The quantities I required from these models were a density profile at an early time

after the explosion (but after Hubble flow had been established), a mixing profile, and an

approximate temperature of the region. Fortunately all the needed information was

available (see figures 7-10). For each model I divided the region of the ejecta which

contained nickel into shells. I approximated the density profiles for each model by a

series of stp functions to obtain a typical density for each shell. I determined an analytic

function that fit Woosley's mixing profile and integrated it over the region of each shell to

determine the amount of nickel in that shell. Nomoto's mixing was a step function so the

amount of nickel in each of those shells was just the area under each step function. A

summary of the results follows.
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Table VI-2: Summary of model 10HM (Woosley et al.)

Shell (Me) 56 Ni (Me) n(t%) (cn)3 P(to) (g-cn 3

1.6-2.0 0.0105 1.08x10 I°  1.Oxl0 12

2.0 - 2.5 0.0109 5.38xi0 I°  5.OxlO 12

2.5 - 3.0 0.0090 3.76x1011  3.5xi0 -11

3.0- 3.5 0.0073 5.38xi01I  5.Ox1O - 12

3.5 - 4.0 0.0061 3.76xi01 °  3.5xi0 -12

4.0 - 4.5 0.0050 2.37x10 1° 2.2x10 -12

4.5 - 5.0 0.0041 2.37x10 0I  2.2xi0 -12

5.0 - 5.5 0.0034 2.16xi01I  2.0x10 -12

5.5-6.0 0.0027 1.61x10 I°  1.5x10 -12

6.0- 6.5 0.0022 3.23x10 9  3.OxlO-13

6.5-7.0 0.0019 2.16x10 9  2.OxlO 13

7.0 - 7.5 0.0015 2.69x10 9  2.5x10 -13

7.5-8.0 0.0012 3.23x10 9  3.OxlO-13

8.0 - 8.5 0.0009 3.23x10 9  3.0xi0 -13

8.5 - 9.0 0.0008 3.23xi09  3.0x10 13

(to = 86 days)

Table VI-3: Summary of model 1 1E1 (Nomoto et al.)

Shell (Me ) 56Ni (Me) n(t.) (cnm3  p(t ) (g-cn)3

1.6-2.1 0.0100 1.08x10 1 ° 1.OX1O 12

2.1 - 2.6 0.0079 8.60x10 1° 8.OxlO 12

2.6-4.0 0.0222 1.08x10 1° 1.OxlO 12

4.0 - 5.1 0.0155 9.68x10 9  9.0X10 " 3

5.1 - 6.2 0.0078 5.38xi0 9  5.OxlO -13

6.2 - 7.6 0.0056 9.68x10 8  9.Ox10 - 14

7.6 - 9.6 0.0008 4.30xi08  4.OxlO 14

9.6- 11.6 0.0007 2.15x10 8  2.0xlO 1 4

(where to = 116 days)
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VII. Analytic Models of Positron Survival

I have worked on an analytic model that began with a differential equation involving

the time rate of change of the number of positrons per gram. It contained a source term

due to the production of positrons by the decay of 56Co and a loss term due to the

radiative recombination of positrons with free electrons. Tlhe main problem with this

solution is that it is hard to incorporate the process of thermalization. But I have found

that the time it takes for a positron to become thermal is small cc'npared to time of

injection into the supernova (at least for injection times of interest). Therefore the error

from this shortcoming should be small.

The analytic solution begins with the expression:

dn-t + n. ne n. = S e . (VII-1)
7it

where n+ = the number of positrons per gram,

S = initial 56Co decay rate per gram = (NAvog./56) X X0,

X0 = 56Co decay constant = 1/111.52 days,

ne = the number of free electrons per cm3 = the number of atoms per cm3 x Z&,

X = the radiative recombination rate.

But from equation (IV-1) the density of atoms is:

n(t) = n(to) --

This changes equation (VII-1) to:

dn 3 -3 ) tJ
t + (X n(tO) to n)tn S •"e t (VI-2)
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An equation of the form dy/dx+a(x)y = h(x) is equivalent to the equation d(py)/dx=ph if:

p =exp[f a(x) dx].

The solution of this equation is (Hildebrand 1976):

y= I h + const.yp phx

In particular, if y = Yi at x = xl:

y(x) =J[ h(x')Z 2 dx'+ pxYW Xh~' Px d'+ y, p(x,) (VII-3)

x1

By making the substitution in equation (V-3):

a(9) = X. n(to) ZfrC t"3 3_.
at 3

=> p(t) = exp I jt_ .

At t = t1, n+(t) = n+(tl) for t1 > to (the initial time of the expansion). From equation

(VII-3):

n+d (t) = n, V(t) 4 +

rt
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The first term corresponds to the number of positrons existing at tI that survive until time

t. The second term corresponds to the number of positrons emitted between tj and t that

survive until time t. I then let tj => to and let t => o :

r_1 r ( t + 1n+(-) = n (to) exp I " 2 I + S fexpI - 2XO 2 dt'. (VII-5)
L 0at'° J LY 2at', J

The integral needed to be done numerically. To do this I used a routine on the microVax,

DQDAGI, from the IMSL Math Library. When time was kept in seconds it was difficult

to get the integrating routine to produce a non-zero solution to the integral in equation

VII-5 because of the extremely small size of the integrand over the entire range of the

integration except for a very sharp peak at 5x10 8 seconds far from the lower limit of

integration. I therefore converted my units of time into years. This moved the peak

closer to the lower limit of integration (in the absolute sense) and thus made it harder for

the integration routine to ignore. I used this model to calculate the number of positrons

that would survive until t = -c from the innermost shell of Woosley's model 1OHM. I

used the following values for the input parameters:

Xo = 1.038x10- 7 s-1 = 1/111.52 days = 3.27 yr-1,

X = 2.00xlo1 2 cm 3 s-1 = 6.31xlO- 5 (T-3500 K) (Bussard et al 1979),

Zfr,= 1.5 electrons/atom,

to = 7.43x106 s = 86 days = 0.236 yrs,

n(to) = 1.08x101 ° atoms cm-3 ,

a = 7.52x10 "20 s-2 = 7.45x10"5 yrs-2.

Using these parameters, the value for the integral in equation VTI-5 was 8.52x10 "27 s.

The first term in equation (VII-5) because it was very small. By taking a value for S of
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1.12x10 15 g:d s-1, I calculated that 9.54x10 -12 positrons per gram should survive. This

translates to 3.99x10' 9 positrons surviving from the inner-most shell of Woosley's

model IOHM. This result is compared to that of the computer simulation in section IX.
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VIT. Comnuter Model of Positron Survival

My computer model for positron escape from a Type II supernova drew from the

derivations and research presented in sections II - VI of this thesis. Two of the major

improvements of this type of model over the previously discussed analytic model were:

1) Requiring positrons to thermalize before annihilating,

2) Allowing the radial mixing of cobalt into regions of lower density.

To accomodate the radial mixing, the supernova ejecta was broken up into a number of

shells (as discussed in section VI). There were two sets of initial conditions

corresponding to the two supernova models discussed in section VI. Each shell was

assigned an initial density and amount of 56Ni (56Co) in accordance with the model being

used. A summary of this data was shown in tables VI-2 and VI-3. Other parameters

needed in this model were the 56Co decay rate, the radiative recombination rate for

positrons and electrons, and the degree of ionization of the ejecta. The values I took for

these parameters were the same as I used in the analytic model:

X)= 1.038xI0 7 s-1,

X= 2.00xlO-12 cm 3 s-t,

Zfre = 1.5 electrons/atom.

This program calculated the number of positrons that survived from each shell. To

do this, the continuous emission of positrons was approximated by a discrete set of

positron injection times varying from 5 - 30 years with the interval between injection

times being 1 year. The number of cobalt decays that occurred within each time interval
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dt centered on the injection time can be described by the expression:

dNCo Ncexp (- o( t- d/2 ))-exp (- )0 ( t + dt/2 ) )I

The number of positrons injected was 1/5 this number.

For each injection time the program calculated a mean time of thermalization for a

positron (the time when a typical positron was slowed to thermal energies). This was

done by using equations (111-4) and (111-9) to calculate a time of thermalization for a

positron in each of the energy intervals listed in table H-1. These times were then

weighted by the energy distribution function to get the mean time of thermalization.

During the thermalization process the density was allowed to evolve according to

equation (IV-1). The program then used equation (V-5) to calculate the fraction of

positrons surviving from the mean time of thermalization until t = - and that time when

the mean lifetime of positrons to radiative recombination, r, equalled 100 years (as

calculated for the central shell of model 1OHM). This second calculation was made to

estimate the error in terminating the recombination process at approximately 110 years

(when t = 100 years). This could be of use when performing a Monte Carlo history.

Thus the number of positrons surviving from a given shell with a given injection time

could be calculated by taking the product of the survival fraction and the number of

positrons injected for that injection time in that shell. The program stepped through

injection times of 5 to 30 years and through all of the shells. The program added the

contributions from all times and all shells to get a total number of positrons surviving for

each model. A flow diagram for the program along with a printout are included in

Appendix B. A quantity of potentially more interest was the probability of a positron

surviving from a particular shell. This gives insight into how the survival of positrons

depends on the density of a region.

A summary of the results for each shell when the positrons were required to survive
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until t =00 can be seen in tables VIII-1 and VIII-2. Note the large difference from shell to

shell in the probability of surviving. This is due to the fact that the probability of

surviving is an exponential involving the density and one can see that the density varies

significantly from shell to shell. Thus the radial mixing of nickel (cobalt) outward

significantly improves the production of positrons able to contribute to a diffuse

annihilation line (see figures 11 and 12).

As I have already stated I have also calculated the probability that a positron will

survive until the mean lifetime, r, equalled 100 years (approximately 110 years after the

explosion) and the number that will do so from each shell to compare with the previous

results (see tables VIII-3 and VII-4). The differences between the results for survival

until t = - and until r = 100 years is small for the shells producing the most positrons.

The difference between the overall survival probability and the overall number of

"survivors" is correspondingly small, 11.4% for model 1OHM and 2.6% for model 1 1El

(see table VII-5).
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Table VII-l: Summary of Results for model 1OHM Initial Conditions

Shell (M. ) Initial Density Probability of Surviving Number That Survive

(at 86 days) until t = - until t =

1.6 - 2.0 1.08x101 °  1.98x10 "33  8.89x10 1 9

2.0 - 2.5 5.38x10 10  1.87x10 -57  0

2.5 - 3.0 3.76x10' 1  9.52x10 -155  0

3.0 - 3.5 5.38x10 10  1.87x10 -5 7  0

3.5-4.0 3.76xi0 1° 6.53x10 -51  1.71x10 2

4.0 - 4.5 2.37x10 10  1.40x10- 43  3.00x10 9

4.5 - 5.0 2.37x10 10  1.40x10 "4 3 2.46x10 9

5.0 -5.5 2.16x10 10  3.08x10 "4 2  4.48x1010

5.5 - 6.0 1.61x10 1° 2.98x10 38  3.44x10 1 4

6.0 - 6.5 3.23x10 9  3.16x10 -22  2.97x10 3°

6.5 - 7.0 2.16x10 9  2.14x10 -19  1.74x10 33

7.0 - 7.5 2.69x10 9  6.83x10 2 1  4.38x10 31

7.5 - 8.0 3.23x10 9  3.16x10-22  1.62x10 3°

8.0 - 8.5 3.23x10 9  3.16x10-22  1.22x10 30

8.5 - 9.0 3.23x10 9  3.16x10 "22  1.08x10 3 °

Table VIII-2: Summary of Results for model 1 E Initial Conditions

Shell(M Initial Density Probability of Surviving Number that Survive
0 (at 116 days) untl t = - until t = -

1.6-2.1 1.08x10 1 ° 3.04x10 -4 5  1.30x10 s

2.1 - 2.6 8.60x10 1 ° 1.80x10 "10 5  0

2.6 - 4.0 1.08x10 0I  3.04x10-45  2.88x10 8

4.0 - 5.1 9.68x10 9  1.32x10 4 3 8.76x10 9

5.1 - 6.2 5.38x10 9  9.08x10 "36  3.03x1011

6.2 - 7.6 9.68x10 8  5.01x10 20 1.20x10 33

7.6 - 9.6 4.30x10 8  3.27x10 15  1.12x10 37

9.6- 11.6 2.15x10 8 5.06x10 12 1.51x10 4 0
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Table VI1-3: Summary of Results for model 1OHM Initial Conditions

Shell (M.) Initial Density Probability of Surviving Number That Survive

(at 86 days) until t = 100 years until c = 100 years

1.6 - 2.0 1.08x10 1 ° 3.43x10 3 3  1.54x10 20

2.0 - 2.5 5.38x10 1° 2.90x10 5 6  0

2.5 - 3.0 3.76x10 11  2.02x10 "146  0

3.0 - 3.5 5.38x10 1 ° 2.90x10 "5 6  0

3.5 - 4.0 3.76x10 10  4.45x10 50  1.16x10 3

4.0-4.5 2.37x1010  4.70x10 -43  1.00xO10

4.5 - 5.0 2.37x10 10  4.70x10 "43  8.24x10 9

5.0 -5.5 2.16xi0 0°  9.27x10-42  1.35x10 11

5.5 - 6.0 1.61x10 10  6.77x10 38  7.82x10 14

6.0 - 6.5 3.23x10 9  3.72x10 22  3.50x10 30

6.5 - 7.0 2.16x10 9  2.39x10 1 9  1.94x10 33

7.0 - 7.5 2.69x10 9  7.83x10 2 1  5.03x10 3 1

7.5 - 8.0 3.23x10 9  3.72x10 22  1.91x10 30

8.0 - 8.5 3.23x 109 3.72x10-22 1.43x10 3°

8.5 - 9.0 3.23x10 9  3.72x10 22  1.27x10 30

Table VIII-4: Summary of Results for model 1 E Initial Conditions

Shell (M )Initial Density Probability of Surviving Number that Survive
0 (at 116 days) until V = 100 years until c = 100 years

1.6-2.1 1.08x10 10  1.17x10 "4  5.01x108

2.1 - 2.6 8.60x10 1° 8.47x10 "10 1  0

2.6-4.0 1.08x10 10  1.17x104 4  1.11x10 9

4.0 - 5.1 9.68x10 9  4.44x10 4 3  2.94x10 10

5.1 - 6.2 5.38x10 9  1.78x10 s35  5.94x1017

6.2 - 7.6 9.68xi08  5.66x102°  1.36x10 33

7.6 - 9.6 4.30x10 8  3.47x10-15 1.19x10 37

9.6- 11.6 2.15x10 8 5.18x10 "1 2 1.56x104
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Table VII-5: Summary of Overall Results for models 10HM and IIEI

1OHM IOHM lE1 11E1
t =o 00'-- 100 t =o ccr= 100

Probability of 6.20x10 -21  6.93x10 -2 1  5.03x10 -14  5.16x10 - 14

Surviving

Number of 1.79xi0 33  2.00x10 33  1.52x10 40  1.56x10 40

Survivors

% Difference

in number of 11.7% 2.6%

"survivors"

I comment on these results and compare them to the analytic model in section IX.
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IX. Summary and Conclusions

My original purpose for undertaking this project was to investigate Type II

supernovae as a possible source for the diffuse component of the 511 keV annihilation

radiation from the Galactic center. At the recent 14th Texas Symposium on Relativistic

Astrophysics, Reuven Ramaty argued that a source of 3x10 43 positrons/sec was needed

to account for the diffuse background (this is easily verified to within an order of

magnitude by a simple calculation if the distance to the Galactic center is taken to be 8

kpc). My models show that Type H supernovae do not produce nearly enough positrons

to account for this line. Using initial conditions set by model 1lEl, my models show

only 1.5x10 4 0 positrons will survive (model 1OHM inital conditions yielded

approximately 1033). If one assumes a fairly optimistic rate of one Type II supernova

every 100 years in the Galactic center, a production rate of only 4.777x103 0 positrons/sec

is achieved. This is well short of what is needed. This does not mean that this model was

a failure. There was good agreement between the analytic model and the computer

model. The computer model predicts 8.89x101 9 positrons surviving until t = *- from the

inner shell of model 1OHM while the analytic model predicts 3.99x1019. The diffence

can be accounted for by the fact that in the computer model the positrons were required to

thermalize before annihilating. During the thermalization process the density in each shell

decreased. This coupled with the strong dependence of the probability of survival on the

density increases the chance for survival from a particular injection time. As mentioned

previously, the integral contained in the analytic solution was difficult to evaluate. A

non-zero solution came only after converting seconds to years.

The computer model produced interesting results as I have stated in section VIII The

most interesting is the strong dependence of the probability of survival on the density (see

figure 13). The reason for this is that the probability of survival contains an exponential
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involving the density. Thus a variation in density from shell to shell of a factor of 50,

produces a factor of e50 difference in the probability of surviving. This is the reason that

mixing has such an overwhelming effect on the number of positrons that survive.

Therefore a small refinement in the density profiles of these models to produce a better fit

to the light curve would greatly affect the results of my model.

This strong dependence on the density suggests that Type I supernovae with their

larger explosion energies (and thus lower densities at a given time) are good candidates

for the source of positrons. All that is needed is a nearby Type I supernova to improve

theoretical models.

In my computer model I used positron injection times ranging from 5 to 30 years.

Figure 14 shows that a peak level of production was reached within that time period for

each shell, ie. the injection time that produced the most "survivors" from each shell was

between 5 and 30 years. Thus I feel that my models adequately describe the production

of Galactic positrons from Type II supernovae given their somewhat limiting

assumptions. More complicated hydrodynamic models which take into account the

structure of the magnetic fields and the details of the radial mixing may yield more precise

results but they should not negate my final result.



50

0.

LO

') C u

-4S

Cu

CdU

in~~ in0oi
4l cu CV (U)

(JIVAT~~~in. joA~liql)0



511

C\2

'U

0 LD In L

co N C0

(s~~eA)uolop~d tnuixyqjooui-



52

Appendix A: Comparison of Analytic and Monte Carlo Survival Routines

Program: fdecay.c Last revision: 1/18/89

Time Monte Carlo Survival Prob. Analytic Survival Prob.

------- ----------------------- ------------------------------
9.460800e+08 1.040000e-03 1.035319e-03
9.776160e+08 1.600000e-03 1.658541e-03
1.009152e+09 2.520000e-03 2.543862e-03
1.040688e+09 3.880000e-03 3.755176e-03
1.072224e+09 5.460000e-03 5.358753e-03
1.103760e+09 7.460000e-03 7.420789e-03
1.135296e+09 1.014000e-02 1.000504e-02
1.166832e+09 1.302000e-02 1.317069e-02
1.198368e+09 1.658000e-02 1.697060e-02
1.229904e+09 2.120000e-02 2.144997e-02
1.261440e+09 2.698000e-02 2.664539e-02
1.292976e+09 3.3100OOe-02 3.258440e-02
1.324512e+09 4.022000e-02 3.928528e-02
1.356048e+09 4.758000e-02 4.675734e-02
1.387584e+09 5.568000e-02 5.500124e-02
1.419120e+09 6.472000e-02 6.400976e-02
1.450656e+09 7.426000e-02 7.376845e-02
1.482192e+09 8.482000e-02 8.425654e-02
1.513728e+09 9.612000e-02 9.544782e-02
1.545264e+09 1.080000e-01 1.073115e-01
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Appendix Be Program Flow Chart and Printout

READ

INIT. COND.

____~ 1 MAX9

TINIE START BO
S STOP

TIME..STEP TIME

TRGY-START 5SO NO c
ENSTOP

NERGY+STEP zmERG
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/* ********** *~* LIFET=vEW.C 4/19/'89 *S*****...*

#include <stdio.h>
#include <maih~h>
#define CULOFF_ ENERGY 2.6e-4 /**in MeV**/

#deine INITIAL...DENSITY 1.08el0 Iatoms/cc, from Woosley's
graph**/
#define INITIALJIME 7.43e6 I**86 days expressed in
seconds**/
#define RADRECOMRATE 2.0e-12 I**irom Bussard's paper**/
#define COBALT...SQURCE 1.4987e54 /**0O07 solar masses converted to
atoms**/
#define DECAY_.RATE 1.03785e-07 f1/111 .52 days**/
#define ION-POT 2.99e-4 f**11.5*Z in Mev**/
#define ZYRtEE 1.5 /**assumiung 1.5 free
electronsatom**/
#define Z...BOUND 24.5
#define IN_FLIGHT _FRACTION 0.0 /**Number that annihilate in
flight**/
#deflne RESTMASS 0.511
#define END_.TIME 3.473495e9 /**when tau is 100 years**/

FILE *point;

1* **.*.*.*.*..*****..**SUBROUTITNES *************.***

/******Ionization Losses using the handbook foiinula*****I/

double ionization(energy. density, betasqrd)
double energy, density, bctasqrd;

double ratio, parti. pan2, pan3. dEdxl;
ratio =pow(energy/RESTMASS, 0.5);
parti 5.le.25(dnsityZ_BOUND)/betasqrd,
part2 - pow(betasqrd. 0.5)(negy+REsT.MAss)*ratioIION.YOT;
part3 

= 0.5*bezsqd
dEdxl = partlI (og(prt2)-pant3);
return (dEdxl);

/******Plama Losses using Ja isons formug******/

double plasma(energy. density. betasqrd)
double energy. density. betasqrd;

double gamma. part4 partS5. part6, dEWx;
gamma - pow((1-betasqrd) -0.5),
part4 = 5.le250(densiry*ZYREE)/berasqd;
partS = 5.3e5*pow(betasqrd. OJ5)*pow((density*Z.FREE -0.5);
part6 - 3.86e-llpow((2.O/(gammnIa..0)), 0.5);
dEdx2 = pat4log(O.764pn5/put6);
return (dEdxi2);
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/******Radiative Capture of Positrons******/

double decay(meantherrn, initdensity)
double meantherm. initdensity;

double fraction, stop, taunot, tiniesqrd, const;

timesqrd = pow(meantherm, -2.0);
stop = pow(ENDTIME, -2.0);
taunot=l/(irmtdensjty*Z..YREE*RADRECOMRATE*pow(INMITATIME 3.0));
const = pow((taunot*2), -1.0);
fraction = exp(const4'(stop - timesqrd));

Trurn(fraction);

/******Nmbr of Positrons Injected at Starttime******I

double injection(starttime, step, sheilsource)
double starttime, step, shellsource;

double start. finish. nuni;

numn=shellsource(exp(-(DECAY-.RATE(stamime-(step/2)))) -

exp(-(DECAYRATE.(starttime(stwp/2)))));

retum(num);

f. *.**.*.**.*..*e**.seMAIN PROGRAM * ~

maino

double energy, startEn. time, starttime, step;
double density, scale, meanahmin;
double dEdx. dEdxlI, dEdx2, dE, aveenergy;
double velocity, dt. total survivors, nunjected. percentleft;
double avebeta, betasqrd;
double store(10J(21, distib(10J, sheU(15]121;
double inmtdensity, sheilsource, giranidtotal. sum;
int z.y.z's;

point-fapen("dxaW"."w");

fprintf(poink' PROGRAM: lifetirneWxc LAST REVISION: 4/19/8%N'n");
fpintf(point," Stat 5 year Fmnish 30 years Stepw I yewarW'ca);
fprintf(point ,"----

disrib[0J= 0.061;
distib(1]= 0.117;
distnb21m 0.152;
distib(3Jm 0.165;
distrib(41= 0.158;
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distrib(51= 0.142;
distrib[6]= 0.104;
distrib[7]= 0.066;
distrib(8]= 0.030;
distrnb[9]= 0.005;

shellfOJ[0]= 1.08e10;
shell[l]= 5.38e10;
shellE2][0]= 3.76el 1;
shell(3][0]= 5.38e10;
sheU(4][0I= 3.76e10;
shell[5)10]= 2.37e10;
sheil[6][0]= 2.37e 10;
shdll(7j(0]= 2.16e10;
sheU[8][0]= 1.61e10;
shell[9]i0J= 3.23e9;
shell[1O][OJ= 2.16e9;
sheU (11 ][01]= 2.69e9;
shell[12][0]= 3.23e9;
shell[13][0]= 3.23e9;
shell[14][0]= 3.23e9;.

sheU[O][ 1]= 2.246e53;
shdll(1](1]= 2.332e53;
shell[2][1]= 1.925e53;
sheIUl3][1]= 1.562e53;
shdll[41[11= 1.3 05e53;
shellt5][1]= 1.070053;
shell(6]E1]= 8.770e52;
shell[7)f I]= 7.273e52;
shell(8]E1]= 5.773e52;
sheU[9lll 1= 4.706e52;
shell(10]E1]= 4.064e52;
sheUll[11](1]= 3.209e52;
shell[12]11= 2.567e52;
shdllhl3][11= 1.925e52;
shellfl4J1]1= 1.71 1e52;

grandtotal = 0;
step = 3.1536e7;
z = 0;

/*********e*************START OF SHELL LO***.**A***..

for (z=0; z< 14.5; z=z+1.O)

ttl= 0;
inikdazsity = shell(z]lOI;
dshlsum - shejzllhJ/51;

fprinzf(point.* Shell numbe. %2.Of Initial den~sity: %5.3e Amount of cobalt %5.3ft*'", z+1.0.
initdensiy, sheilsource);

fprintf(poin4- ThflECIION TIME TIME OF THERM. NUMBER OF POSrTROKS PROB. OF
SURVIVAL~n");

/e***s*****e**e****ese0*START OF TIM OPe***e.**e***a*.
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for (starttime= 1.5768e8; staruime<= 9.47e8; starttime=stamtime + step)

X--0;
y--0;
meantherm'0;*

/**********************START OF ENERGY LOOP********************/

for (startan= 0.073; startEn<= 1.46; startEn=startEn + 0.146)

time=starttime;
energy=startEn;

/*s************'fljHPJN4Jhjj7)TION L O********~*

while (energy >CUT_OFF_ENERGY)

scale=(5.OelO/3.92e2l)*pow(time, 3.O)*shell[O][0]/shell~zlt0];
density=idensiy*pow(ITIALTIME3.0)/pow(time,

3 .0);
betasqrd=1.pow(((energy/REST_.MASS)41.0), -2.0);
dEdxl~ionization(energy, density, betasqrd)
dEdx2=plasma(energy, density, betasqrd);

dEdx--dEdxl+dEdx2;
dE--scaledEdx;
if(energy-dE.>0)

aveencrgy=energy-(dFt2);
avebeta=pow(1 -pow(((aveenergy/REST_.MASS)+1 .0), -2.0), 05);
velocity=3e 10*avebeta;
dE=scale/velocicy;

/**********Increment Time and Emergy *********/

energy--energy-dE;
6me~tme~dt;

else goto end-,

/********************END OF WIULE LOP************

/**********Calculate and Store Liftime*****

end:;
store[x++][0J-tdme;

/....**Se*******EDOF ENERGY LOOP***** *********

/*$********Cauate Mean Ufetm* e***/

while (y < x)

storey][11-stomy][Odistib~y];
meimean eadm+torety](1J;
yuy+l;

/*00000*000Cakculate How Many Suvived*****/



58
percentleft = decay(meantherm, initdensity);
numinjected =injection(starttime, step, sheilsource);
survivors = percentleft*(rnminjected*(l -RN..FUJGHL-FRACTION));
total = total + survivors;

fprirnf(point" %e %e %e %e~n".startimemeanthermnuniinjected,percentleft);

1* **********~*********NDOF TIMELOP*******s***S*I

frntf(point."\rM"); fprintf(point,"Number surviving from shell %1.0f: %ezM", z+1.0, total);
fprintf(point."----------------------------------------- \t)

grandtotal = grandtotal + total;

1* ********in**********NDOF SHELLLOP* ** **** *** I

sum=-O;

for(s=O;s<l4.5;s=s+l)

sum=sum.Nshelllslil]/5);

fprinf(point,'The total number surviving = %e out of 90e.\nxn',grandtotalsurn);
fprintf(point,'The survival fraction is %e.", (grandtotal/sum));

fclose(point);
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